Механизмы компенсации сердечной недостаточности кардиальные и экстракардиальные
5.Экстракардиальные механизмы компенсации сердечной недостаточности. Эффекты и патогенетическая оценка включения экстракардиальных механизмов компенсации.
Происходит активация нескольких нейроэндокринных систем, важнейшими из которых являются:
симпатико-адреналовая система (САС) и ее эффекторы (адреналин и норадреналин);
ренин-ангиотензин-альдостероновая система (РААС) (почки — надпочечники);
тканевые ренин-ангиотензиновые системы (РАС);
предсердный натрийуретический пептид;
эндотелиальная дисфункция и др.
увеличение ЧСС (стимуляция b1-адренергических рецепторов) и, соответственно, МО (поскольку МО = УО х ЧСС);
повышение сократимости миокарда (стимуляция b1- и a1-рецепторов);
системная вазоконстрикция и повышение ОПСС и АД (стимуляция a1-рецепторов);
повышение тонуса вен (стимуляция a1-рецепторов), что сопровождается увеличением венозного возврата крови к сердцу и увеличением преднагрузки;
стимуляция развития компенсаторной гипертрофии миокарда;
активирование РААС (почечно-надпочечниковой) в результате стимуляции b1-адренергических рецепторов юкстагломерулярных клеток и тканевых РАС за счет дисфункции эндотелия.
На начальных этапах повышение активности САС способствует увеличению сократимости миокарда, притока крови к сердцу, величины преднагрузки и давления наполнения желудочков, что в конечном итоге приводит к сохранению в течение определенного времени достаточного сердечного выброса. Однако длительная гиперактивация САС у больных хронической СН может иметь многочисленные негативные последствия, способствуя:
1. Значительному увеличению преднагрузки и постнагрузки (за счет чрезмерной вазоконстрикции, активации РААС и задержки натрия и воды в организме).
2. Повышению потребности миокарда в кислороде (в результате положительного инотропного эффекта активации САС).
3. Уменьшению плотности b-адренергических рецепторов на кардиомиоцитах, что со временем приводит к ослаблению инотропного эффекта катехоламинов (высокая концентрация катехоламинов в крови уже не сопровождается адекватным увеличением сократимости миокарда).
4. Прямому кардиотоксическому эффекту катехоламинов (некоронарогенные некрозы, дистрофические изменения миокарда).
5. Развитию фатальных желудочковых нарушений ритма (желудочковой тахикардии и фибрилляции желудочков) и т.д.
Гиперактивация симпатико-адреналовой системы
Один из наиболее ранних компенсаторных факторов при дисфункции сердца. Особенно важной оказывается в случаях развития острой СН. Эффекты реализуются прежде всего через a- и b-адренергические рецепторы клеточных мембран различных органов и тканей.
Гиперактивация ренин-ангиотензин-альдостероновой системы
Имеет значение не только почечно-надпочечниковая РААС, но и локальные тканевые.
Активация почечной ренин-ангиотензиновой системы сопровождается выделением клетками ЮГА почек ренина, расщепляющего ангиотензиноген с образованием пептида — ангиотензина I (АI). Последний под действием АПФ трансформируется в ангиотензин II, который является основным и наиболее мощным эффектором РААС. Воздействие АII на АТ2-рецепторы клубочковой зоны коркового вещества надпочечников приводит к образованию альдостерона, основным эффектом которого является задержка в организме натрия и воды, что способствует увеличению ОЦК.
В целом активация РААС сопровождается следующими эффектами:
выраженной вазоконстрикцией, повышением АД;
задержкой в организме натрия и воды и увеличением ОЦК;
повышением сократимости миокарда (положительное инотропное действие);
инициированием развития гипертрофии и ремоделирования сердца;
активацией образования соединительной ткани (коллагена) в миокарде;
повышением чувствительности миокарда к токсическому влиянию катехоламинов.
Активация РААС при острой СН и на начальных этапах развития хронической СН имеет компенсаторное значение и направлена на поддержание нормального уровня АД, ОЦК, перфузионного давления в почках, увеличение пред- и постнагрузки, увеличение сократимости миокарда. Однако в результате длительной гиперактивации РААС развивается ряд отрицательных эффектов:
1. увеличение ОПСС и снижение перфузии органов и тканей;
2. чрезмерное увеличение постнагрузки на сердце;
3. значительная задержка жидкости в организме, что способствует формированию отечного синдрома и повышению преднагрузки;
4. инициация процессов ремоделирования сердца и сосудов, в том числе гипертрофии миокарда и гиперплазии гладкомышечных клеток;
5. стимуляция синтеза коллагена и развитие фиброза сердечной мышцы;
6. развитие некроза кардиомиоцитов и прогрессирующее повреждение миокарда с формированием миогенной дилатации желудочков;
7. повышение чувствительности сердечной мышцы к катехоламинам, что сопровождается возрастанием риска возникновения фатальных желудочковых аритмий у больных СН.
Антидиуретический гормон (АДГ), секретируемый задней долей гипофиза, участвует в регуляции проницаемости для воды дистальных отделов канальцев почек и собирательных трубок. Например, при недостатке в организме воды и дегидратации тканей происходит уменьшение объема циркулирующей крови (ОЦК) и увеличение осмотического давления крови (ОДК). В результате раздражения осмо- и волюморецепторов усиливается секреция АДГ задней долей гипофиза. Под влиянием АДГ повышается проницаемость для воды дистальных отделов канальцев и собирательных трубок, и, соответственно, усиливается факультативная реабсорбция воды в этих отделах. В итоге выделяется мало мочи с высоким содержанием осмотически активных веществ и высокой удельной плотностью мочи.
Наоборот, при избытке воды в организме и гипергидратации тканей в результате увеличения ОЦК и уменьшения ОДК происходит раздражение осмо- и волюморецепторов, и секреция АДГ резко снижается или даже прекращается. В результате реабсорбция воды в дистальных отделах канальцев и собирательных трубках снижается, тогда как Na+ продолжает реабсорбироваться в этих отделах. Поэтому выделяется много мочи с низкой концентрацией осмотически активных веществ и низкой удельной плотностью.
Нарушение функционирования этого механизма при сердечной недостаточности может способствовать задержке воды в организме и формированию отечного синдрома. Чем меньше сердечный выброс, тем больше раздражение осмо- и волюморецепторов, что приводит к увеличению секреции АДГ и, соответственно, задержке жидкости.
Предсердный натрийуретический пептид
Предсердный натрийуретический пептид (ПНУП) является своеобразным антагонистом вазоконстрикторных систем организма (САС, РААС, АДГ и других). Он продуцируется миоцитами предсердий и выделяется в кровоток при их растяжении. ПНУП вызывает вазодилатирующий, натрийуретический и диуретический эффекты, угнетает секрецию ренина и альдостерона.
Секреция ПНУП — это один из наиболее ранних компенсаторных механизмов, препятствующих чрезмерной вазоконстрикции, задержке Nа+ и воды в организме, а также увеличению пред- и постнагрузки.
Активность ПНУП быстро усиливается по мере прогрессирования СН. Однако, несмотря на высокий уровень циркулирующего ПНУП, степень его положительных эффектов при хронической СН заметно снижается, что связано, вероятно, с уменьшением чувствительности рецепторов и увеличением расщепления пептида. Поэтому максимальный уровень циркулирующего ПНУП ассоциируется с неблагоприятным течением хронической СН.
Нарушения эндотелиальной функции
Дисфункция эндотелия, возникающая под действием различных повреждающих факторов (гипоксии, чрезмерной концентрации катехоламинов, ангиотензина II, серотонина, высокого уровня АД, ускорения кровотока и т.д.), характеризуется преобладанием вазоконстрикторных эндотелийзависимых влияний и закономерно сопровождается повышением тонуса сосудистой стенки, ускорением агрегации тромбоцитов и процессов пристеночного тромбообразования.
К числу важнейших эндотелийзависимых вазоконстрикторных субстанций, повышающих сосудистый тонус, агрегацию тромбоцитов и свертываемость крови, относятся эндотелин-1 (ЭТ1), тромбоксан А2, простагландин PGH2, ангиотензин II (АII) и др. Они оказывают существенное влияние на сосудистый тонус и сократимость миокарда, величину преднагрузки и постнагрузки, агрегацию тромбоцитов и т.д.. Кроме того, эндотелин-1 способствует образованию коллагена в сердечной мышце и развитию кардиофиброза. Существенную роль вазоконстрикторные субстанции играют в процессе пристеночного тромбообразования
Одним из ведущих патогенетических механизмов формирования и прогрессирования сердечной недостаточности является гиперактивация нейрогормональных систем организма — САС, РААС, АДГ, ПНУП и др., а также дисфункция эндотелия.
2. На начальных этапах развития заболевания активация этих систем носит адаптационный характер и направлена на сохранение достаточного сердечного выброса, системного АД и перфузии органов и тканей. Этот эффект реализуется благодаря:
повышению сердечного выброса за счет гиперфункции с последующей гипертрофией;
увеличению постнагрузки (вазоконстрикция);
увеличению преднагрузки и ОЦК (физиологическая задержка натрия и воды) и др.
3. Длительная чрезмерная активация нейрогормональных систем приводит к:
избыточной задержке натрия и воды в организме (отечный синдром);
резкому увеличению ОПСС (нарушение перфузии органов и тканей);
чрезмерному возрастанию пред- и постнагрузки, что ведет к снижению функции сердца;
стимулированию синтеза коллагена и развитию кардиофиброза;
развитию некрозов кардиомиоцитов, прогрессирующему повреждению сердечной мышцы и формированию миогенной дилатации сердца.
Использованные источники:
Кардиальные механизмы компенсации — сердечная недостаточность
Кардиальные адаптационно-компенсаторные механизмы имеют большое патогенетическое значение при хронической сердечной недостаточности. Под влиянием нейрогуморальных воздействий, а также нередко вследствие влияния самого этиологического фактора (например, препятствия для выброса крови из левого желудочка при аортальном стенозе и т. д.) развивается концентрическая или эксцентрическая гипертрофия миокарда. Длительное существование увеличенной постнагрузки приводит к развитию концентрической гипертрофии миокарда — то есть к утолщению мышечной стенки без расширения полости желудочка. Увеличение толщины миокарда при концентрической гипертрофии позволяет развивать достаточное внутрижелудочковое давление в систолу и преодолеть значительно увеличенную постнагрузку и обеспечить адекватную перфузию органов и тканей. При увеличении преднагрузки постепенно развивается эксцентрическая гипертрофия, то есть умеренная гипертрофия миокарда, сопровождающаяся тоногенной дилатацией полости желудочка.
Гипертрофия миокарда и умеренная тоногенная дилатация ЛЖ в течение определенного времени обеспечивают сохранение достаточной величины сердечного выброса, что происходит в соответствии с законом Стерлинга — увеличение исходного конечного диастолического объема желудочка приводит к усилению его сокращения, что позволяет преодолеть увеличенную преднагрузку и постнагрузку.
Однако с течением времени в условиях продолжающейся гемодинамической
перегрузки или непосредственного повреждения миокарда компенсаторная реакция сердца становится недостаточной, эффективность механизма Стерлинга резко уменьшается, сердечный выброс снижается. Уменьшение насосной функции сердца запускает процессы ремоделирования сердца, которые происходят под влиянием всех вышеуказанных патогенетических механизмов сердечной недостаточности, прежде всего, высокой активности нейрогуморальных систем.
Ремоделирование — это структурно-геометрические изменения ЛЖ, включающие в себя процессы гипертрофии миокарда и дилатации сердца, приводящие к изменению его геометрии и нарушению систолической и диастолической функции.
- -Изменения на уровне отдельных кардиомиоцитов:
— нарушение образования АТФ в процессе окислительного фосфорилирования и истощение запасов АТФ и креатинфосфата,
— экспрессия фетальной формы тяжелой цепи головки миозина с низкой АТФазной активностью,
— нарушение структуры и экспрессии белков, обеспечивающих сопряжение возбуждения и сокращения,
— десентизация b-адренорецепторного аппарата кардиомиоцитов,
— гипертрофия,
— нарушение функции белков цитоскелета.
2. Изменение миокарда ЛЖ:
— уменьшение количества кардиомиоцитов (за счет некроза и апоптоза),
— изменения во внеклеточном матриксе (активация металлопротеиназ, деградация матрикса, замещающий фиброз).
3. Изменения геометрии ЛЖ:
— дилатация,
— сферическая конфигурация,
— истончение стенки,
— функциональная (относительная) митральная регургитация.
В основе приблизительно 25-30% всех случаев хронической сердечной недостаточности лежит диастолическая дисфункция ЛЖ, то есть невозможность миокарда полностью расслабиться в момент диастолы и вместить требуемый объем крови.
Установлено, что по мере усугубления миокардиальной дисфункции уменьшается плотность на мембране саркоплазматического ретикулума молекул Са++- АТФазы (этот феномен может обнаруживаться уже на стадии компенсаторной гипертрофии миокарда) и компенсаторно (для предупреждения перегрузки цитоплазмы кардиомиоцитов ионами кальция) повышается активность Na+/Ca++-обменника. Способность кардиомиоцитов снижать внутриклеточный уровень ионов Са++ во время релаксации до исходного и насыщать ионами кальция саркоплазматический ретикулум прогрессивно падает, что связано с падением в кардиомиоцитах концентрации АТФ и снижением соотношения АТФ/АДФ («энергетическое голодание»).
Скорость расслабления миокарда в диастолу определяется также аффинностью тропонина С к ионам Са++ и АТФазной активностью головок миозина. Аффинность тропонина С к ионам Са++ при хронической сердечной недостаточности может оказаться повышенной, что приведет к значительному затруднению высвобождения и удаления Са++ из цитозоля кардиомиоцита, что соответственно замедляет релаксацию миокарда. В последние годы установлена огромная роль избыточного накопления коллагена в интерстициальном пространстве в повышении жесткости миокарда и, следовательно, в нарушении его способности расслабляться в диастоле. До тех пор, пока гипертрофия миокарда сопровождается пропорциональным увеличением как мышечного, так и сосудистого и интерстициального компонентов миокарда, она носит адаптивный характер и является концентрической. Когда же начинает избыточно развиваться соединительная ткань и преобладать периваскулярный и интерстициальный фиброз, гипертрофия миокарда становится патологической, эксцентрической и со временем приводит вначале к диастолической, а затем и к систолической дисфункции сердца.
Клиническая картина
Среди всех случаев хронической сердечной недостаточности около 70—75% приходится на долю систолической формы. При ишемической болезни сердца, артериальной гипертензии, дилатационной кардиомиопатии, некоторых ревматических пороках сердца (например, аортальных) вначале развивается клиническая симптоматика хронической левожелудочковой недостаточности (ЛЖСН), в последующей по мере прогрессирования основного заболевания и продолжающегося снижения сократительной функции миокарда ЛЖ развиваются легочная гипертензия и правожелудочковая недостаточность, таким образом, хроническая сердечная недостаточность становится бивентрикулярной (БЗСН).
Далее излагается клиническая симптоматика хронической БЗСН. В конце раздела будут выделены клинические особенности ЛЖСН и правожелудочковой сердечной недостаточности (ПЖСН).
Использованные источники:
МЕХАНИЗМЫ КОМПЕНСАЦИИ ПРИ СЕРДЕЧНОЙ НЕДОСТАТОЧНОСТИ
Механизмы компенсации при сердечной недостаточности делятся на две группы:
1. Интракардиальные (миокардиальные):
Срочные интракардиальные механизмы:
1) в ответ на кратковременную перегрузку объемом — гетерометрический механизм компенсации (закон Франка-Старлинга);
2) в ответ на кратковременную перегрузку давлением — гомеометрический механизм компенсации (феномен Анрепа);
3) рефлекс Бейнбриджа;
4) в ответ на острое повреждение и гибель части кардиомиоцитов — заместительный склероз (замещается только дефект структуры, функция не компенсируется).
Долговременные интракардиальные механизмы — это прогрессирующий процесс ремоделирования миокарда, зависящий от пускового фактора и представленный в виде компенсаторной гиперфункции сердца, в основе которой лежит гипертрофия миокарда.
Экстракардиальные механизмы компенсации при сердечной недостаточности:
I. Компенсаторная гиперактивация нейрогуморалъных систем, направленная на повышение работы сердца:
1) симпатоадреналовой системы (САС);
2) миокардиальной ренин-ангиотензиновой системы (РАС);
3) системы ренин-ангиотензин-альдостерон-АДГ (РААС-АДГ).
II. Компенсаторная гиперактивация дублирующих кислородтранспортных систем — эритропоэза и внешнего дыхания.
Проявления этой группы механизмов: вторичный эритроцитоз с повышением вязкости крови и повышением нагрузки на сердце; одышка.
Гетерометрический механизм (закон Франка-Старлинга) — это такой механизм компенсации, возникающий при перегрузке объемом, в основе которого лежит увеличение напряжения и силы сердечных сокращений в от-
вет на увеличение растяжения миокарда под влиянием избыточного объема крови.
Гомеометрический механизм (феномен Анрепа) — это такой механизм компенсации, возникающий при повышении сопротивления оттоку крови, в основе которого лежит постепенное повышение силы сердечных сокращений без значительного изменения длины мышечных волокон. В этом случае длина мышечного волокна практически не увеличивается (поэтому и механизм называется гомеометрическим), но повышается давление и напряжение, возникающее при сокращении мышц в конце диастолы. Повышение силы сердечных сокращений происходит не сразу, а постепенно, пока не достигнет уровня, необходимого для сохранения минутного объема крови. Этот механизм развивается при стенозах клапанов сердца, артериальной гипертензии и др. Из двух описанных механизмов наиболее полезен гетерометрический механизм, так как меньше потребляется кислорода, меньше расходуется энергии.
Рефлекс Бейнбриджа — это развитие тахикардии (увеличение частоты сердечных сокращений) вследствие повышения давления крови в полных венах, правом предсердии и растяжения их.
Использованные источники: